In this study, the maneuvering forces and moments of the DARPA Suboff submarine model were determined under static drift condition using computational fluid dynamics (CFD) methods. Two different configurations of the submarine model namely; the AFF-3 configuration, which consists of bare hull and four stern rudders, and the fully appended configuration AFF-8, which is formed from bare hull, sail, and four stern rudders, have been used. Initially, for the AFF-3 configuration, a mesh independence study has been conducted. Three different cases; coarse, medium and fine meshes are investigated at small angles (0-2-4-6 degrees). After that the results have been verified, the medium mesh structure has been selected and the analyzes have been continued for larger angles (from 00 to 180 degrees). The accuracy of the obtained results was assessed by comparing them with non-dimensional experimental results. The comparison between the CFD results and the experimental results demonstrated a high level of agreement, indicating the effectiveness and accuracy of the CFD methods used in this study. After the validation studies, the maneuvering forces and moments of the AFF-8 fully appended configuration were calculated for which no prior experimental data existed in the literature. To achieve this, steady-state CFD simulations were performed using the commercial software ANSYS Fluent, and the results were presented for the same flow angles.
Keywords: Submarine, Maneuvering forces, Static drift, DARPA Suboff, CFD